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Stability of Finite-Difference Models 
Containing Two Boundaries or Interfaces 

By Lloyd N. Trefethen* 

Abstract. It is known that the stability of finite-difference models of hyperbolic initial-boundary 
value problems is connected with the propagation and reflection of parasitic waves. Here the 
waves point of view is applied to models containing two boundaries or interfaces, where 
repeated reflection of trapped wave packets is a potential new source of instability. Our 
analysis accounts for various known instability phenomena in a unified way and leads to 
several new results, three of which are as follows. (1) Dissipativity does not ensure stability 
when three or more formulas are concatenated at a boundary or internal interface. (2) 
Algebraic " GKS instabilities" can be converted by a second boundary to exponential 
instabilities only when an infinite numerical reflection coefficient is present. (3) " GKS-stabil- 
ity" and "P-stability" can be established in certain problems by showing that the numerical 
reflection coefficient matrices have norm less than one. 

0. Introduction. Hyperbolic systems of partial differential equations admit solu- 
tions which behave locally like waves moving along characteristics. When such a 
system is modeled numerically by finite differences or finite elements, the result is a 
dispersive medium that may admit additional parasitic wave modes with wave-lengths 
on the scale of the discretization. Energy associated with these parasitic waves travels 
at a group velocity that is unrelated to the characteristics of the original system [25], 
[30]. However, the behavior of such waves has a decisive effect on stability. 

For finite-difference models of linear hyperbolic problems with a single spatial 
boundary, a stability theory was developed around 1970 by Kreiss, Osher, and 
others [10], [18]. In earlier papers we have shown that this theory can be naturally 
stated in terms of dispersive wave propagation [26], [27]. To summarize: if a 
boundary with homogeneous boundary conditions can emit a radiated wave in the 
absence of any incident waves, i.e., a wave with group velocity pointing into the 
interior of the domain, then it is unstable. If it has an infinite reflection coefficient 
for waves at some frequency, a stronger condition, then it is more severely unstable. 

This paper applies wave propagation ideas to investigate stability for one-dimen- 
sional linear finite-difference models with two or more boundaries or internal 
interfaces. The most basic example of such a model is a discrete approximation to an 
equation whose spatial domain is an interval such as [0, 1]. Another example is a 
model of a problem featuring discontinuous coefficients, e.g., wave propagation in a 
discontinuously stratified medium [4]. A third is a numerical scheme employing local 
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mesh refinement to improve accuracy, in which various interfaces between fine and 
coarse grids will be present [2], [5]. A fourth is any model with a composite 
numerical boundary or interface, such as a fourth-order difference model on [0, x0) 
that has a five-point stencil, and which therefore requires one numerical boundary 
condition at j = 0 and another at j = 1 [15]. Such a model can be viewed as 
containing two interfaces separated by a single grid point, and we will show that this 
view may be useful for stability analysis. 

Any multi-interface model potentially admits trapped numerical waves that reflect 
back and forth repeatedly from one interface to another. If the reflections cause 
amplification, this can lead to unbounded growth of numerical solutions. The factors 
that control this are: magnitude of the reflection coefficients, which is the source of 
growth; dissipation of waves as they travel between interfaces, which is a source of 
attenuation; and travel time between interfaces, which determines how frequently 
any reflection circuit that causes growth is repeated. All of the arguments of this 
paper consist of working out consequences of various combinations of these factors 
that may be of practical interest. 

In particular, we investigate two kinds of stability. First, "stability" or "Lax- 
Richtmyer stability" refers to the usual Lax-Richtmyer definition for time-depen- 
dent finite-difference models, or to variants thereof such as " GKS-stability" (Defini- 
tion 3.3 in the well-known paper by Gustafsson, Kreiss, and Sundstrom [10]). A 
difference model that is stable in this sense may admit solutions that grow with time, 
provided that the growth does not get worse as the mesh is refined. This is what is 
needed to ensure convergence as the mesh size approaches zero to the correct 
solution of the time-dependent differential equation, for each fixed time t. On the 
other hand, to be "P-stable" [1], a model must admit no growing solutions at all. 
(See Section 3 for the precise definition. Such a model is also sometimes called 
"time-stable" [29].) Although the theory here is not as well developed, such a 
condition is needed if a time-dependent difference model is to be used to obtain 
steady-state solutions, as is common in computational aerodynamics. As a rule of 
thumb, we will show that P-instability is very often associated with reflection 
coefficients greater than 1 in magnitude, and Lax-Richtmyer instability with reflec- 
tion coefficients that are infinite. 

Section 1 reviews stability theory for one-boundary difference models (Proposition 
1). Section 2 investigates interfaces separated by a fixed number of grid points Aj as 
the mesh is refined, as in the fourth-order boundary condition mentioned above. 
Here the travel times go to zero with the mesh spacing, with the effect that finite 
reflection coefficients greater than 1 can cause catastrophic unstable growth (Pro- 
positions 3, 4, 4'). Conversely, reflection coefficients smaller than 1 ensure stability 
(Proposition 5). Section 3 considers interfaces separated by a fixed distance Ax as 
the mesh is refined, as in the problem on [0, 1] mentioned above. Here, the travel 
times are independent of mesh spacing, so large finite reflection coefficients can 
cause P-instability (Proposition 7), but not Lax-Richtmyer instability (Proposition 
6). In this context multiple reflections may convert the weak instability of a single 
interface to a catastrophic instability (Proposition 8), but only if the unstable 
interface is of the sort with an infinite reflection coefficient (Proposition 9). Once 
again, reflection coefficients smaller than 1 in norm ensure stability (Proposition 10), 
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and if the model is dissipative, it suffices to look at the reflection coefficients for the 
partial differential equation rather than its numerical approximation (Proposition 
11). 

For convenience of reference, here is a list of the explicit examples presented here 
to illustrate various points. The symbol A indicates the modulus of a reflection 
coefficient, and Sn the solution norm at time step n. These quantities will be made 
more precise later on. 

1. Algebraically unstable one-boundary model (one boundary, A = x, Sn- 
const n). 

2. Exponentially unstable concatenation of three stable dissipative formulas 
(fixed-A j, A > 1, Sn - constn). 

3. P-stability guaranteed by reflection coefficients less than 1 (fixed-Aj or Ax, A 
< 1, Sn - const). 

4. P-instability caused by reflection coefficients greater than 1 (fixed-Ax, A > 
1, Sn - constt). 

5. Exponential instability caused by interaction of two algebraically unstable 
boundaries (fixed-Ax, A = x, Sn - (Aj)"t)). 

The reader may be disappointed at the artificiality of some of these examples, 
especially (2) and (3), and he may wonder how helpful wave reflection ideas can be 
in practice for the design of difference schemes. A full answer to this question will 
have to await further experience. Nevertheless, there is no doubt that the instability 
mechanisms described here are real and deserve to be understood. At present, 
virtually no difference models containing multiple interfaces have been shown to be 
stable. Perhaps the ideas here, such as Proposition 5, can help bring about a change 
in this situation. 

Much of the material in this paper can be found in Section 6 of the author's 
Ph. D. dissertation [24]. For some numerical illustrations, see [28]. For a different 
analysis of stability for two-boundary problems that is closely related to the present 
one, see the report [8] by Giles and Thompkins, which is mainly concerned with 
P-stability. Giles and Thompkins consider parasitic wave propagation for models 
with variable as well as constant coefficients. 

The phenomenon of instability caused by trapped wave packets can also occur in 
two-dimensional problems when the domain contains a corner. Osher has given 
examples of hyperbolic systems (not difference models) in corners that are ill-posed 
because of trapped waves [19], while Sarason and Smoller have shown that for a 
2 x 2 strictly hyperbolic system such as the second-order wave equation, this cannot 
happen [21]. But trapped numerical waves may render a finite-difference model of 
even the latter sort unstable. The principles involved are precisely those of this 
paper, but we will discuss corners elsewhere. 

The reader interested in getting to the main ideas quickly may find it possible to 
turn directly to Section 2. 

1. Review of Wave Propagation and Stability for One-Boundary Difference Mod- 
els. Consider a linear first-order hyperbolic system of partial differential equations 

(1 .1) ut = Aux 
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with initial data 

(1.2) u(x,0) = 1(x). 

Here u(x, t) and f(x) are N-vectors, A is a constant N x N matrix, and the spatial 
domain is R. The statement that (1.1) is hyperbolic means that A has real eigenvalues 
{ f }, 1 < v < N, and a complete set of associated eigenvectors { U, }. It follows that 
if ( E R is an arbitrary wave number, then (1.1) admits N linearly independent 
solutions of the form u(x, t) = Uexp(i(ct + (x)), namely the waves 

(1.3) u(x, t) = Uvei((O)t+?x) 

with x>(() = tt. wv is called the frequency of (1.3), and the N-valued linear function 
X = c() is the dispersion relation for (1.1). Each wave (1.3) propagates uniformly 
with no change in shape at the velocity -tt, hence leftward or rightward depending 
on whether ti is positive or negative, respectively. 

Since the vectors U, span RN, any f E L2(RN) can be written as a Fourier integral 
with respect to ( of waves (1.3). It follows, by Parseval's theorem, that I1u(-, t)II is 
constant with respect to t; a fortiori, for any fixed t one has 

(1.4) Ilu(-, t) II < constrlf 1|, 

which is to say, (1.1)-(1.2) is well-posed in L2. Related well-posedness bounds 
continue to hold under reasonable assumptions if (1.1) is given a zeroth-order term 
Bu, an inhomogeneous term F(x, t), or variable coefficients, although in these 
circumstances some growth at a bounded rate in t must be permitted. For simplicity, 
we will ignore these possibilities. 

Let u be approximated by a vector grid function vjn = v(jh, nk) = u(jh, nk), 
where k is the time step and h is the space step. { vjn } will be determined iteratively as 
the solution of an s + 2-level finite-difference formula 

S 

(1.5) Q _loV = E Q a'n-a 
a=O 

where each QO is a spatial finite-difference operator with constant matrix coefficients 
of dimension N X N. Let Q be a name for (1.5). As with the differential equation, 
one can show that Q admits solutions 

(1.6) j7 = Vei(t?4x), x =jh, t = nk, VE RN. 

For each ( E R, in fact it permits in general not N but (s + 1)N distinct values of 
a, whose relation to ( constitutes the dispersion relation for (1.5). These values 
depend nonlinearly on (, and they are not necessarily real. A solution with ( E R 
and Im X > 0 decays with t, but a solution with ( E R and Im co < 0 grows at the 
rate elIm wt = constn, and if Q admits a solution of this kind, it is unstable. On the 
other hand, if there are no such growing modes, and if any modes with (, X E R are 
nondefective in a sense we will not go into, then Q is stable. Thus, stability for a 
constant coefficient finite-difference model on an unbounded domain can be in- 
vestigated by a fairly straightforward process of Fourier analysis. For details, see 
[20]. 

Let Q be stable and admit a solution (1.6) with (, co E R. It can be shown that the 
dispersion relation for (1.5) determines a function Co = Co(() for (, Co in a neighbor- 
hood of ,, X [27, Lemma 3.2], and that the energy associated with the wave (1.6) 
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propagates at the group velocity 

(1.7) d 

The precise meaning of this statement is asymptotic: if Q is given initial data 

f? = p(x - Ct)Vei(wt+?x), 0 < a < s, t = ak/, x = jh, 

for some smooth function 4, then the solution at a later time will be 

Vjn ~- Ct) Vei(wt+?x) 

with the approximation becoming better as 4 is made smoother. See, for example, 
Lemma 5.1 of [27]. 

Example 1. As an example, consider the leap frog (LF) model 

(1.8) v1j'+1 Vn-1 + X(V1n+1- - Vn1), A = - = const, 

of ut = ux. By inserting v(x, t) = ei( t?(X), one finds that the dispersion relation is 
(1.9) sin /k = X sin ah. 

Differentiation leads to the group velocity formula 

(1.10) C(o, so) - - osh 
cos co/c 

Thus a well-resolved wave, i.e., one with ah, cok 0, propagates under LF with 
group velocity C = -1. On the other hand,LF also admits many waves with ah or /k 
not small. The extreme cases are the "parasitic" solutions (I, a) = (,g/h, 0), (0, n/k), 
and (n/h, 7/k), which by (1.10) have group velocities +1, +1, and -1, respec- 
tively. For the first two of these, the sign of C reveals that energy propagates in the 
physically wrong direction. In fact, for each sufficiently small frequency X E R, (1.9) 
gives two distinct wave numbers ( in the fundamental range [-7n/h, 7n/h], and by 
(1.10), one of the corresponding waves propagates leftwards and the other propa- 
gates rightwards. See [25] or [30] for illustrations. El 

Returning to the general model Q of (1.5), let us change the notation and rewrite 
(1.6) in the more convenient form 

(1.11) v' - VKc'z , Kc, z EC -{0} , 

where K = elth and z = eiwk. (For full generality one must permit a further multi- 
plicative factor j8 to represent certain defective modes. Such modes are rarely 
important in practice, however, so in all of what follows we assume 8 = 0, although 
the results remain valid in the general situation. The reader is referred to [27] for 
more complete details.) A solution (1.11) with JKJ = IZI = 1 and C < 0 (resp. > 0) 
will be called leftgoing (resp. rightgoing). For obvious geometric reasons it also 
makes sense to say that a solution with IzI > 1 is leftgoing if IKI > 1 and rightgoing if 

JKJ < 1. It can be shown under reasonable assumptions (see [10]) that for any z with 

IzI > 1, Q admits a family of R = Nl linearly independent rightgoing and L = Nr 
linearly independent leftgoing solutions (1.11), where 1 and r denote the numbers of 
grid points to the left and right of center, respectively, covered by the stencil of Q 
[27, Section 3]. Therefore, the general solution to (1.5) of the form vjn = z n4k is a 
linear combination 

R?L 

V; = Z aEVmKAm. 
m=1 
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If we relabel a, V, and K by /3, W, and p for leftgoing components, this becomes 

R L 

Vn Znn#,m~ 
(1.12) = 

z E 
amVmKA + z E 

I~mWmIun 
m=1 m=1 

(RIGHTGOING) (LEFTGOING) 

We emphasize that the leftgoing and rightgoing waves in this sum have very little to 
do with the waves admitted by the original equation (1.1). 

Let a left-hand boundary be introduced at x = 0, so that the spatial domain 
becomes R+ andj is restricted toj > 0. Now (1.1) must be supplemented by as many 
additional scalar boundary conditions as there are inflowing characteristics at x = 0, 
and if this is done in the natural way, well-posedness is guaranteed [13]. But we pass 
over these details and consider the finite-difference model. Regardless of the 
characteristics of (1.1), (1.5) will have to be supplemented by R = Ni additional 
boundary conditions, one for each rightgoing numerical solution component. For 
simplicity, we take these to be homogeneous and of the form 

M1 M2 

(1.13) j =E YiV6 0 < j < Y o 1 
a=-l i=O 

for some integers M1 and M2 and N x N matrices Yio. Let Q be a name for the 
initial-boundary value problem model (1.5), (1.13). 

In practice, it can easily happen that Q is unstable. A theory of such instability 
was developed a decade ago by Kreiss, Osher, and others, and described at length in 
the well-known paper [10] by Gustafsson, Kreiss, and Sundstrom-henceforth 
"GKS". In [26] and [27] the Kreiss/Osher theory has been given the following 
interpretation. If Izj > 1 is fixed, then the general superposition (1.12) of leftgoing 
and rightgoing waves does not satisfy (1.13), and hence is not a solution to Q. 
Instead, (1.13) can be thought of as a set of R = Ni reflection conditions relating 
rightgoing to leftgoing waves at the boundary. These conditions are obtained by 
substituting (1.12) in (1.13) and then collecting terms in am and fm, so that one gets 

(1.14) E(z) 
. = D(Z)[ 

_aR P 

for some R x R matrix E(z) and R x L matrix D(z). For most z, E(z) will be 
nonsingular, and (1.14) determines the reflected wave coefficients as a bounded 
function of the incident ones. If we write A = E-1D, so that A(z) is the R X L 
reflection matrix for the given boundary conditions, then this function has the form 

(1.15) a= A(z)/ = [E(z)] 1D(z)/. 

(This A(z) has nothing to do with the coefficient matrix of (1.1).) However, it may 
happen that for some Izol > 1, E(zo) is singular, and in this case (1.14) permits a 
solution consisting of rightgoing waves in the absence of leftgoing waves. This will 
cause instability. If in this situation A(z) is unbounded as z -> z0, then an infinite- 
reflection coefficient exists at z0, and the instability will be particularly severe [27]. 
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Thus the Kreiss/Osher theory leads to the following "GKS stability theorem": 

PROPOSITION 1 [10], [27]. The initial-boundary value problem model Q is GKS-unsta- 

ble if and only if E(z) is singular for some IzI > 1. Equivalently, it is GKS-unstable if 

and only if for some Izi > 1 it admits a nonzero solution vjn = znoji (1.12) consisting 

entirely of rightgoing wave components. 

Proof. See [27] for a precise statement and proof. El 
The notion of "GKS-stability" employed in this result is a fairly complicated one 

given as Definition 3.3 in [10]. See [27] for a discussion of its meaning. For the 

remainder of this paper "stable" means "GKS-stable", except where otherwise 

stated. 
Example 1, continued. To return to the previous example, suppose LF is applied 

on x > 0 with the numerical boundary condition 

(1.16) vn+1 = nl 

In K, z notation, the dispersion relation (1.9) and group velocity (1.10) for LF are 

(1.17) Z-I =X(,c1) c= K 
ic1/, 

z K ) z + 1/z 

and (1.16) imposes the additional condition K = 1. One sees immediately that the 

wave (K, Z) = (1,-1), i.e., vj = (-1)n, satisfies both the interior formula and the 

boundary condition and has C > 0. Therefore, by Proposition 1, the model (1.8), 

(1.16) is unstable. By contrast, the condition vo~l = vl is satisfied by no rightgoing 

solutions to LF, so with this boundary condition LF would be stable. 
This example is one of those with an infinite reflection coefficient. To see this, 

note that for each IzI > 1, (1.17) gives two values of K related by K2 = -1/K1. Let 

these be denoted by K and p, where K is the "rightgoing" value with Re K Re z < 0 

and lKl < 1, for which C > G if lKI = 1, and p is the " leftgoing" one with ReiKRez > 0 

and lKI > 1. Then for this problem the superposition (1.12) takes the form vjn = aKi 

+ f3pi. To calculate the reflection coefficient we substitute this in (1.16) and obtain 
a + /3 = aiK +? , that is, a = A13 with 

(1.18) A(z) 1 - 

This quotient becomes infinite when z = -1, K = 1, [ = -1. 
The unstable behavior of this difference model is illustrated in Figures 4.1-4.2 

and Figures 5.1-5.4 of [24] and in Figures 3,4 of [27]. El 

2. Two Interfaces Separated By a Fixed Number of Grid Points /Xj. The stability 
result of Proposition 1 is illustrated in Figure 1. If a set of numerical waves reflects 

at a boundary with a gain in amplitude, as in Figure la, this does not constitute 

instability. It may force the constant in a discrete estimate analogous to (1.4) to be 

large, but it does not preclude the existence of such an estimate. On the other hand, 

if the boundary can produce radiated energy in the presence of no incident energy at 

all, as in Figure lb, then it is unstable. 
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(a) stable (b) unstable 

FIGURE 1 

Stable and unstable solutions z n'kk at a left-hand boundary 

N -> 

(a) stable (b) unstable 

FIGURE 2 
Stable and unstable solutions z n'k at an internal interface 

Suppose now that Q is a model containing not a boundary but an internal 
interface of some kind separating two difference schemes Q and Q, (possibly 
identical). The interface might be a complicated structure extending over several grid 
points, or it might be simply an abrupt change of coefficient, of difference formula, 
or of mesh size. It is plausible that the picture should change to that of Figure 2: Q is 
unstable if and only if it permits a solution znojk that is outgoing from the interface 
on both sides. This conclusion can be derived rigorously from Proposition 1 by 
folding the interface problem into an initial-boundary value problem for a system of 
equations of twice the original size [3], [5], [6], [16], [24]. 

Reflection equations for an internal interface analogous to (1.14)-(1.15) for a 
boundary can be obtained by the same folding idea. For each IzI > 1, there are 
R-+ L+ linearly independent waves that may be incident at the interface from both 
sides, and L-+ R+ that may be radiated. The full reflection equation is the linear 
system describing how the coefficients of these wave components are related, 

f3L- aR- 

(2.1) E(z) D( 

OR+AL+ 

where E and D are matrix functions of dimensions (L-+ R+) x (L-+ R+) and 
(L-+ R+) X (R-+ L+) (cf. (1.14)). However, in this paper we will only need the 
response of an interface on one side to a wave incident on that side. The corre- 
sponding reflection equation is the projection of (2.1) onto a one-sided domain and 
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range. In the case of incidence on the right, for example, it has the form 

(2.2) E(z) D(z) 

where E is R+x R+ and D is R+X L+. When E(z) is nonsingular, (2.2) can be 
solved to yield and equation analogous to (1.15), 

(2.3) a +-A(z)#+ 

where A is R + X L +. Note that although wave modes on the left of the interface do 
not appear in (2.3), the projection process by which this equation is obtained 
imposes the condition that the wave energy on the left is nonzero in the leftgoing 
components only. In other words (2.2)-(2.3) describes the response of the interface 
to energy incident on the right. 

Now consider a finite-difference model Q with p interfaces located at grid points 
j =l,. . . ,j , and write A j = jP - j1. (To be precise, each J, is a half-integer, with one 
difference formula applied on j]l, < j < j, and another on j, < j < j.+ , j E Z.) In 
this section, the indices j, are to be kept fixed as h, k -O 0, and we recognize this 
assumption by calling Q a model of "fixed-A j" type. As mentioned in the 
Introduction, a fixed-Aj problem might come up in the analysis of adaptive 
mesh-refinement procedures, or with any boundary or interface discretization that 
involves more than two distinct difference formulas. We obtain the following 
stability criterion: 

PROPOSITION 2. A fixed-A j multi-interface finite-difference model is unstable if and 
only if for some Iz I > 1 it admits a nonzero solution z "+O containing only leftgoing waves 
to the left and rightgoing waves to the right of all interfaces. 

Proof. The situation is illustrated in Figure 3. For a proof, one can relabel the grid 
points so that the interval fromjl to]jp becomes one complicated interface separating 
the two regions j < jl and j > jP. Then the folding argument mentioned above for a 
single interface applies. {I 

Remark. In the case of an initial-boundary value problem with a boundary at the 
left, say, the region to the left of the interfaces in Proposition 2 becomes finite in 
extent (or possibly empty, depending on labeling), so in principle one should not 
restrict the search for unstable modes to solutions that are leftgoing there. But in this 
region the difference formula is necessarily one-sided, which implies, under the usual 
assumptions, that it admits leftgoing waves only for IzJ > 1. Therefore the change is 
vacuous. 

From the wave propagation point of view the following result should now be 
unsurprising. 

PROPOSITION 3. For the stability of a fixed-Aj multi-interface model, it is not 
sufficient that the individual interfaces be stable. 

Remark. Stability of the individual interfaces is presumably not necessary. either. 
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(a) interior (b) boundary 

FIGURE 3 

Unstable multi-interface solutions z nkpj at 

an interior interface and at a boundary 

-> + -4 F =- > 

(a) (b) 

FIGURE 4 

The concatenation of stable interfaces may be unstable 

Proof. The proof consists of exhibiting Example 2, below, but the idea behind it is 
indicated in Figure 4. Imagine two interfaces at which waves can reflect with a 
reflection coefficient greater than 1. When these are placed together, it might happen 
that the reflected wave from each interface serves to stimulate the reflected wave 
from the other. A process of reflection back and forth will then ensue in which at 
each circuit, the amplitude grows by a factor const > 1. Since one circuit takes only 
a fixed number of time steps, this process will cause growth at a rate IlvnII = constn, 
which is an explosive instability. E 

Example 2. Let ut = ux on x > 0 be modeled by an "interior" formula for] > 2 
combined with additional boundary formulas at j = 0 and j = 1. The interior 
formula is an upstream difference with some added dissipation: 

(2.4) j C + ?(vJ+-V) ( + 8 jv?-2v?n + vAn) j2. 

The formula atj = 0 is a linear combination of upstream differences: 

(2.5) Vn+l1 = n + A ( _ V0 + 7A 3 -_V0 

Atj = 1 we use a leapfrog formula with some added dissipation: 

(2.6) 1 =V1 + X(vn - on) + (Vn+- 2vn+1 + vn+1) 

It is verified in Section 6.3 of [24] that if X = 8 and ? = 1036/83205, then (2.4)-(2.6) 
is exponentially unstable, admitting a solution vn= znpj with z = 129/128. The 
eigensolution p has the form (4, 1, 4, 4, ,.. .), and can be viewed as the superposi- 
tion of leftgoing and rightgoing waves represented in Figure 3b. A numerical 
experiment confirms that (2.4)-(2.6) is highly unstable and blows up like (129/128)n 

[24]. E 
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We have chosen such an unwieldy example because it is contrived to have a 
special additional property: all of the formulas (2.4)-(2.6) are dissipative. This is of 
interest because, as a matter of practical experience, dissipativity often ensures 
stability. For the case of a single interface, it has been proved by Ciment [6] (for 
interfaces) and later by Goldberg and Tadmor [9] (for boundaries) that under 
reasonable hypotheses, this is always true. See also Section 6.2 of [24]. Later, it was 
claimed by Oliger [17] that the same must hold with multiple interfaces. However, 
the example above shows this is not so. We formulate this conclusion as a new 
proposition: 

PROPOSITION 4. In a fixed-Aj model with two or more interfaces, such as an 
initial-boundary value problem model with distinct boundary conditions at j= 0 and 
j = 1, dissipativity of each individual difference formula is not sufficient to ensure 
stability. 

It would, of course, be more satisfying to find an illustration of this principle that 
was somewhat realistic. 

Example 2 also serves to illustrate another (weaker) stability principle. In some 
circles, where the Kreiss/Osher theory is considered too complicated for practical 
work, the "von Neumann" or "Fourier method" for heuristic stability analysis is 
used instead. This idea, proposed by Trapp and Ramshaw [23] (not by von 
Neumann), is to check the numerical boundary formulas for amplification factors 
greater than 1 just as if they were interior formulas, and hope that if there are none 
such, the model will be stable. In general, there is little reason to expect this 
procedure to work, and indeed the heuristic justification of it by Trapp and 
Ramshaw is not really valid. Yet because of the algebraic simplicity of the difference 
formulas usually encountered, the idea is surprisingly reliable in practice [22]. In 
particular, for a dissipative difference model with a solvable boundary condition 
applied at a single point, it can readily be shown that the Fourier condition is 
sufficient for stability [9]. 

But Example 2 confirms that the same does not hold when there is more than one 
boundary condition: 

PROPOSITION 4'. In an initial-boundary value problem model involving distinct 
boundary conditions at j = 0 and j= 1, the "von Neumann method" of boundary 
condition analysis is not sufficient to ensure stability. 

If the stability of each interface individually is not enough for a general stability 
test, what is? The unfortunate answer is that for a complete analysis one must 
investigate all possible modes zn pj suggested by Propositions 1 or 2 to see if they 
satisfy the boundary conditions. The difficulty with this computation is that its size 
grows with the total width of the interface region: one must study a matrix function 
E(z) of dimension approximately Aj in the scalar case, N Aj in general. The 
required investigation can be prohibitively difficult. 

However, various sufficient but not necessary conditions for stability can be 
derived that involve the interfaces individually. Consider the two-interface model 
Q = QQIQo?Q+ illustrated in Figure 5. Here Q, Q0, and Q+ are constant-coefficient 
difference formulas with stencil parameters { l, r4}, { 1, r }, { 1+, r+}, and]j andj2 are 
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Q_ Qo Q+ 

x x x x x x x x x x x x 

i = -i i 32 
X =X1 X = X2 

FIGURE 5 

Two-interface model 

half-integers with A] = j2 - ], > 1. The interface at j] consists simply of an abrupt 
change from Q applied for j < j, to Q0 applied for j > j], and similarly at j2. We 
assume that each interface Q IQ0 and QoIQ+ is individually stable, and seek a 
condition to ensure that no unstable solution z of Q with IzI > 1 (as in Figure 4b) 
can exist. To ensure decoupling of Q and Q+, we assume further r < r + Aj and 

1+< / + Aj. 
Let Q0 admit R rightgoing and L leftgoing solutions, labeled as in (1.12). Let K(z) 

and M(z) be the R X R and L X L nonsingular matrices 

K(z) = 
diag(K,,. . . ,KR), M(z) = diag(i,. . L). 

and let V and W be the N X R and N X L matrices with columns Vm and Wm,. 

V(Z) = (VI,. *,VR), W(Z) = (WI,. *,WL). 

Then (1.12) can be rewritten 

(2.7) vj = zn[V(z)K(z)ja + W(z)M(z)j13]. 

By definition of V, K, W, and M, this expression satisfies Q0 for allj, regardless of a 
and /3. Conversely, a function vjn = znpj satisfies Q0 forjl <j <j2 only if it has a 
representation (2.7) valid in j] - / < j < j2 + r for some a and /3. The question is, 
for which a and /3, if any, can a function vn defined by (2.7) in j] - / < j < j2+ r be 
extended to a solution of Q for all j that is leftgoing in j < jL and rightgoing in] >j2 ? 

The answer is: for precisely those a, /3 satisfying the reflection equations 

(2.8) a = A1l, P = A2a, 

where A1 is an R x L matrix as in (2.3) relating a to /3 at the Q I Q0 interface, and 
A2 is an L x R matrix relating /3 to a at Q 0 Q +. This follows from the construction 
of (2.2). The assumption that each interface is stable in isolation has permitted us to 
pass from the form (2.2) to (2.3), since it implies by Proposition 1 that E,(z) and 
E2(z) are nonsingular for each IzI > 1. 

The matrix A(z) of (1.15) was effectively defined with respect to the grid point 
j = 0, in the sense that it is at that point where a solution (1.12) to Q has the form 
Va + W/3 with a = A(z)/3. For the present problem, it is more natural for A1 to be 
defined with respect to the grid point j,, and A2 with respect to j2. We can 
accomplish this by replacing A1 in (2.8) by K-j"A1Mj1 and A2 by M-j2A2Kj2. 

Equation (2.8) becomes 

(2.9) K(z)"a = A,(z)M(z)jl3 
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and 

(2.10) M(Z) ,/3= A2(z)K(z) ]a. 
With this somewhat cumbersome notation it is possible to state a simple lemma on 

the existence of solutions V.' = Zn+P to Q. 

LEMMA 1. The fixed-Aj two-interface model Q described above admits a solution 

,,n = znpj with IzI > 1 consisting of outgoing waves only in j < j, andj > j2 if and only 
if the L X L matrix 

(2.11) EL(Z) = M(Z)AjA2(z)K(z)AjA1(Z) 
has an eigenvalue 1. 

Proof. Suppose Q has a solution vjn = znpj of the kind described. Let a and /3 be 
the coefficient vectors for the representation (2.7) of v in j] - 1 < j < j2 + r. By 
definition of A, and A2, the equations (2.9) and (2.10) must hold. Multiplying them 
together gives 

M(Z)j2/3 = A2(z)K(z) jAj(z)M(z) jl,, 
that is, 

[M(z)jls] = EL(Z)[M(Z)"1s]1 
Thus M(z) j1/ is an eigenvector of the sort required. 

Conversely, if EL(z) has an eigenvalue 1, let /3 be M(z)-j times a corresponding 
eigenvector, and define a by (2.9). Then by definition of /3, (2.10) is satisfied also, so 
Q has a solution of the required kind. E 

Lemma 1 now makes it possible to give sufficient conditions for stability based on 
A, and A2 alone. 

PROPOSITION 5. In the fixed-Aj two-interface problem described above, in which 
each interface individually is stable, a sufficient condition for stability is 

IIAi(z)II 11A2(Z)II < 1 for all jzj > 1 
in any norm subordinate to a vector norm. 

Remark. A, and A2 are rectangular matrices, i.e., operators A,: CL -_ CR and A2: 
CR- CL . The norms in Proposition 5 are the operator norms subordinate to any 
norms on CL and CR, which must, however, be the same for both A, and A2. 

Proof. By the definitions of rightgoing and leftgoing we have I KI 1 I< I m I for 
all z and m, hence IIK(z)II, IIM(z)- 11 < 1 in any norm. Together with the hypotheses 
and (2.11) this implies IIEL(z)II < 1 for each IzI > 1, which precludes the existence of 
the eigenvalue 1 of Lemma 1. E 

Example 3. Here we reproduce a "P-stability" result of Beam, Warming and Yee 
[1] by considering reflection coefficients. Let ut = ux on [0,1] be modeled by any of 
the "A-stable" formulas Q of Beam and Warming, which consist of the usual 
three-point difference operator in x coupled with an A-stable linear multistep 
formula in t. Examples are the backward Euler and trapezoidal (= Crank-Nicolson) 
formulas. Let the boundary conditions be vn+1 = 0 at x = 1, j = Aj + 1 > 2, and 
qth-order space extrapolation (q < Aj + 1) 

(2.12) (K- I) vn+l = 0 
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at x = j = 0, where K denotes the shift operator Kvj = We claim that for any 
fixed A j, Q admits no solution vjn = z nay with I z I > 1. 

Since the spatial difference in Q is just (K - K 1), it is readily seen that for each 

I z > 1, Q admits one rightgoing wave Zn Ki and one leftgoing wave z nit I, with 
ReK < 0 < Re p, IKI < 1 < Iy , and Mi = -1/K. The first inequality is derived as 
follows in Theorem 2.4.1 of [24]. If Q is A-stable, then Re(K - 1/K) < 0 implies 
Izi < 1. Contrapositively, Izi > 1 implies Re(iK - 1/iK) > 0. Since lIK < 1, this means 
that I z I > 1 implies Re K < 0. 

Now we compute reflection coefficients. Atj = Aj + 2 one has 

(2.13) A2=-/=-iK, 

and atj= 2' 

(2.14) A1 = --/4K (K 1K) (iK -( ) 

By the above inequalities one has 1(1 + K )/(1 - K) I < 1 for I z I > 1, and therefore 
<-q 

For q = 1 both reflection coefficients have magnitude < 1, and by the argument of 
Proposition 5 we are done. If q > 1, the assumption A j + 1 > q implies that the 
term KAi in (2.11) cancels any amplification due to the factor IKV -q above, so 
stability follows from Lemma 1. Alternatively, to stick with the one-boundary-at-a- 
time approach of Proposition 5, one can renumber the vertices so that the left-hand 
boundary lies at j = q - I instead of j = 2, and then 1All will be < 1 regardless of 
q. El 

Remark. A similar argument can be applied to the LF model (1.8) together with a 
space-time extrapolation condition such as Vn+i = vn. 

3. Two Interfaces Separated By a Fixed Distance Ax. In this section we continue 
to investigate the configuration illustrated in Figure 5, except that Ax rather than Aj 
will be held constant. Consider a two-interface model Q = QJlQoIQ+ in which the 
interfaces lie at positions xl = j]h and x2 = j2h, and set Ax = x2 -xl. Either or 
both of the interfaces may in fact be a boundary; if both of them are, then Q is a 
model for a differential equation on a strip such as [0, 1]. We ask: as the mesh is 
refined, i.e., as h, k -* 0 with xl and x2 fixed, will the behavior of Q be stable or 
unstable? 

It is now that the distinction between stability and P-stability becomes important. 
Following Beam, Warming, and Yee [1], define: 

Definition. The fixed-Ax two-interface model Q described above is P-stable if it is 
GKS-stable and, in addition, for each fixed h > 0, it admits no solutions n= znp 
with JzJ > 1 containing only leftgoing waves to the left and rightgoing waves to the 
right of both interfaces. 

("P" stands for "practical".) Actually, P-stability is not a stability concept of the 
usual sort, since it is defined in terms of what eigensolutions Q admits rather than 
what growth estimate it satisfies. But obviously, this condition is vital if the 
time-dependent finite-difference model is to be used to approximate steady-state 
solutions, a procedure that is common in practice. In their tests Beam, et al. found 
P-stability of a linearized model problem to be a good indicator of success in 
practical nonlinear steady-state flow calculations [31]. 
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We begin with the following result due to Kreiss: 

PROPOSITION 6. The fixed-Ax two-interface model described above is GKS-stable if 

and only if both interfaces Q- IQ0 and Qo I Q + are individually GKS-stable. 

Proof. See Section 11 of [10] and also Section 2 of [12]. The result refers 

specifically to GKS-stability, and is not necessarily valid for other definitions such 

as 12-stability. The basis of the argument is the invariance of GKS-stability with 

respect to perturbations of size 0(k); the effect of each boundary on the other can 

be shown to be of this order as h, k -O 0. E 
The conclusion of Proposition 6 corresponds to what is often observed in practice: 

if each of two interfaces is GKS-stable, the computational results are usually 

satisfactory, while if one of them is not, they are usually wrong and sometimes 

explosively so. But this section can be viewed as an investigation of how Proposition 

6 fails to tell the whole story. Our remaining results can be summarized as follows. 

Proposition 7 shows that repeated reflections between GKS-stable interfaces can 

cause P-unstable growth at a rate constt, even though GKS-stability is maintained 

(cf. [1] and Section 7 of [10]). Proposition 8 shows that reflection between weakly 

GKS-unstable interfaces can cause catastrophic growth at the rate (A]j)constt (cf. 

Section 17 of [14]). Proposition 9 shows that the latter problem will not occur when 

the unstable interfaces have finite reflection coefficients. Proposition 10, like Pro- 

position 5, shows that all growth can be ruled out if the numerical reflection matrices 

satisfy 11A111 11A211 < 1. Finally, Proposition 11 shows that in the case of dissipative 
models, for the last conclusion it is enough to consider the reflection matrices A,, A2 

for the differential equation itself. 

PROPOSITION 7. GKS-stability does not imply P-stability. Specifically, let each 

interface in the fixed-Ax two-interface model described above be GKS-stable. If the 

reflection matrix at one or both interfaces has norm greater than 1, then repeated 

reflections between the interfaces may sometimes lead to solution growth at the rate 

(3.1) 11v n~l > (const) tllvoll. 

Proof. In the following discussion, we first explain the growth rate constt by two 

different heuristic arguments, which will be used again later in this section. The 

purpose of these arguments is to show that, although growth at the rate (3.1) need 

not occur for every model satisfying the hypotheses, it is nevertheless the typical 

growth rate to be expected in such problems. The proof of the proposition as stated 

then consists of exhibiting Example 4. E 

Argument by repeated reflections. The principle of Proposition 7 is the same as that 

of Figure 4, except that Ax rather than Aj is held constant. Suppose that for some 

I z = 1, a (nondissipating) wave of frequency z exists which can travel leftwards with 

C < 0, reflect at the Q I Q0 interface into a rightgoing wave with C > 0, and then 

reflect at the Q0 IQ-+ interface into the original leftgoing wave mode again. If the 

product of the two reflection coefficients in this circuit is greater than 1, then 

amplification has taken place, and it will be repeated in further reflections. The time 

taken to complete each circuit is roughly constant, independent of h and k as 

h, k -O 0. Therefore, one must expect growth at the rate constt. 
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Argument by perturbed reflection coefficients. If Q permits geometric growth in t, 
we can expect the existence of an eigensolution vj =ZOj with Izol > 1; the rate of 
growth will depend on how large Izol can be. For simplicity, suppose that Q0 admits 
just one rightgoing mode ZnKi and one leftgoing mode z ni for each IzI > 1, and as 
in the above argument, suppose that for some Izol = 1 one has IKI = 1[1 = 1, 

CtL < 0 < CK, and IA1 A21 >1. Then the diagonal matrices K and M of Section 2 
reduce to K and Ai, and the matrix EL of (2.11) is a scalar with modulus IA, A21. 
Obviously, this scalar is not equal to 1, so by Lemma 1, Q does not have a solution 
Znfrp1. But suppose it happens that EL = 1 + const, where, here and from now on, 
const denotes a quantity of order of magnitude 1 that varies from one occurrence to 
the next and is positive except possibly for an imaginary part of size 0(?), when this 
makes sense in context. To find a solution satisfying (2.7), consider z = zo(1 + ?), 
0 < - << 1. This perturbation changes K, ai, A, and A2 by 0(?). In particular, K and [i 
become 

K -* K (1 - const ?), j - p1 + const ?). 

(In the limit ? = 0, the constants here are 1/XICKI and I/XICJ.) By (2.11), EL 
therefore becomes 

EL = (1 + const)(1 - const ?) 

For EL to have value 1, the two factors have to balance, which means ? = 0(1/Al). 
Therefore, one can expect that any eigensolution z j to Q will grow at the rate 

IZ~n const n cons constt, 
I + ~~ I + constt 

Poll|| ( /j) ( } ) 

as asserted in (3.1). 
Example 4. Let ut = ux on [0,1] be approximated by the LF formula (1.8) together 

with the (admittedly contrived) boundary conditions 

(3.2) Vn 1 = I (Vn-1 + vn-2) V +J = 0. 

The reflection coefficient functions are easily seen to be 

( 3 . 3 ) A 1 =-_4 2 z 3a _1 
2 _ 2 

3 
(3.3) Al 29- 

ziK/-p9 A2- ~Kl 

and since the denominators are never zero, both interfaces are GKS-stable. How- 
ever, IAll can be larger than 1. For simplicity, consider the semidiscrete limit X = 0, 
z = 1. By (1.17), for any 6 = th E [0, T/2), LF then has a solution 

Z1 = e , K = -e-i@, Ct = -Cos, CK = Cosu. 

For any 6 with 1AJ(O)I > 1, one can expect Q to admit an eigensolution that grows 
approximately at the rate IA (6)ItCoO0/2, since each circuit of a trapped wave packet 
will take time 2/cos 6. The maximum of these rates for the given formulas turns out 
to be at 6 = .75, where one gets 1All 1 2.38, C = .725, and growth (1.37)t. Numeri- 
cal experiments confirm that solutions grow roughly at this rate, independently of h 
and k. 



STABILITY OF FINITE-DIFFERENCE MODELS 295 

To establish Proposition 7 rigorously, one must prove that Q admits the kind of 
growing eigensolution we have described. This can be done by using perturbation 
arguments based on the above heuristic reasoning to show that (2.11) in Lemma 1 
has a solution with Izj i (1.37)k. Since the conclusion is so obvious, we will not give 
details. n 

The possibility of P-unstable growth as in Example 4 was recognized from the 
start by Gustafsson, Kreiss, and Sundstrom, and in fact Section 7 of [10] is devoted 
to determining when it will occur in a certain 2 x 2 problem. In our particular 
example, the model remains P-unstable no matter how small h and k become. Beam, 
et al. give the impression in various papers that this cannot happen, but that is true 
only when one is dealing with dissipative formulas; see Proposition 10 below. The 
reason that dissipation did not ensure P-stability for the values of h and k they were 
dealing with was that, because of their interest in steady-state results, they were 
using very large values of X, and their formulas happened to be nondissipative in the 
limit X -* x. Thus, their computations made use of difference formulas that were 
dissipative but only weakly so. 

Now, let reflection coefficients be present that are not merely greater than 1, but 
infinite. The potential growth rate becomes much more severe. 

PROPOSITION 8. Let one or both interfaces in the fixed-Aix two-interface problem be 
algebraically GKS-unstable, with an infinite reflection coefficient. Then repeated reflec- 
tions between the interfaces may sometimes lead to solution growth at the exponential 
rate 

(3-4) ||v || (Aj)cntj |V0||. 

Remark. For a single GKS-unstable interface with an infinite-reflection coeffi- 
cient, it is shown in [27] that the unstable growth is in general no worse than 

jvnjj const nlI vo 1. This is what is meant above by "algebraically" GKS-unstable. 
Proof. Again we will motivate (3.4) by two arguments. Then we prove the 

proposition by exhibiting Example 5. E 

Argument by repeated reflections. Suppose Al is infinite at z = zo, and behaves 
near there like 

(3.5) IIA11= 
const 

1Z - Zol 

Since there are only lAj points between the interfaces for each fixed h, Fourier 
analysis implies that no wave on the Q0 grid can have a spectrum narrower than 

O(1/Aj). Therefore, it is plausible that in applying (3.5) to the finite grid, the largest 
amplification possible will be that obtained with an effective value Zeff with 
Izeff - zol = const/zAj, i.e., IIA111 = const ?Aj. Since as before each circuit takes 
roughly a fixed amount of time, independent of h and k as h, k -* 0, this leads 
immediately to (3.4). 

Argument by perturbed reflection coefficients. As before, suppose that Q0 admits 
one leftgoing mode Z IiJ and one rightgoing mode znKcj for each Iz i> 1, and that for 
some Izol = 1 one has lKI = 1y1 = 1, CA < 0 < CK, IA1(zo)l = oX, and JA2(zo)I > 0. 
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Suppose, furthermore, that Al behaves like (3.5) for z = zo. Then, under the 
perturbation z = zo(I + E), one has 

K --* K(1 - const ?), 11-* I(1 + const ?), E L (1-con 
L~~~~ 

For EL = 1 we must have (1 - const - =, which implies 

const 
E ~. ZI log(ij ). 

Hence, growth should be expected at the rate 

11Vn0I = |Z =I( + cn g j ) = econstlog Aj = ( j)COnSt t 

Example 5 ([14, Section 17]). Let ut = ux on [0,1] be approximated by LF (1.8) 
with boundary conditions vn+1 = vn+l (1.16) and vg+1 = 0. We have seen in (1.18) 
that this model has an infinite reflection coefficient at z = -1; in fact one has as in 
Example 3, 

A1(z) = -K/f-1 K A2 = K/l. 

With these formulas (2.11) becomes 

EL(Z) = (K i-K)' +I 

and since I = -i/K for LF, this can be rewritten 

EL(Z) = (-K2)i+l 
1 + 1/K 

I -K 

Assume A j + 1 is even, and write K = 1- 3. The condition EL(Z) = 1 becomes 

(1- _ 3)2)j+2 = 
8 

2 

It is obvious that this equation has a positive real solution near 8 = 0, which is 

asymptotic to 8 = log tAj/2tAj as -*j x. The corresponding value of z is asymp- 
totic to 

X log zAj 
2 Aj 

Therefore, Q has an eigensolution which grows at the rate 

(i? log Ai n=(i? log Ai 
)t Aj/X _ tlog~j/2 - (,Aj)t/2 

( 2 A j ) ( 2 / j) 

This matches the result stated as (17.10) in [14], and numerical experiments confirm 
that physical solutions are rapidly obliterated by growth at the predicted rate. E 

The possibility of catastrophic two-boundary interactions as in Proposition 8 has 
long been recognized by Kreiss and his colleagues, and it has been given sometimes 
as a justification of the apparent strictness of the GKS stability definition. We now 
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show that this justification is only partial, for not all GKS-unstable boundaries have 
infinite reflection coefficients, yet an infinite reflection coefficient is required for the 
catastrophic two-boundary interaction to occur: 

PROPOSITION 9. Let one or both interfaces in the fixed-A~x two-interface problem be 
algebraically GKS-unstable, but with finite reflection coefficients only. Then Q admits 
no eigensolutions vjn = z nj that grow faster than (const) . 

Proof. Consider an eigensolution z j of Q, and let M, K, A2, Al be the matrices 
of Lemma 1 for the given value z. By Lemma 1, the matrix 

(3.6) EL= M 'A2K 'A1 

has an eigenvalue 1, which implies IIE > 1. On the other hand, the finite 
reflection coefficients assumption implies 

(3.7) |A1| 0IA21100 < T 

for some T < x. These bounds together yield 

0L oJKJJo > 11Tj 

or in particular, since IKI < 1 < 1y1 for each of the entries in M and K, 

(3.8) IK, A-11 > (1/T)1llA 

for some K and I. 
Now the critical observation is that for any Cauchy stable formula Q, IzI - 1 is 

bounded by a multiple of 1 -IKI when the latter is small. For a proof, see Lemma 
9.1 of [10]; the constant factor is essentially X times the maximum group velocity 
admitted by Q. Therefore, the last inequality implies Iz I Tconst/Aj for large enough 
Av j. But this leads to 

zr ? (T ) n 
cnst/A'i = constt, 

which proves the proposition. E 

Our next result is the same as Proposition 5, but restated for the fixed-Ax 
problem. 

PROPOSITION 10. In the fixed-Aix two-interface problem, in which each interface 
individually is GKS-stable, a sufficient condition for P-stability is 

IIAi(z)II 11A2(Z)II < 1 for all lz I> 1 

in any norm subordinate to a vector norm. 

Proof. Same as for Proposition 5. E 

Finally, we return to the question of dissipation. In the fixed-zAj situation, the use 
of dissipative formulas gave no guarantee of stability, because the attenuation 
introduced by dissipation might always be overcome by amplification due to 
reflection at the boundaries. But in the fixed-Ax problem, the attenuation of any 
nonphysical wave mode will increase as the mesh is refined. For fine enough meshes, 
this must overcome any finite amplification factors. 
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To obtain a theorem along these lines, though not the sharpest possible, assume 
for simplicity as in [10] that the matrix A in the differential equation (1.1) is already 
diagonal, with L positive and R = N - L negative eigenvalues, and let A1 (R X L) 
and A2 (L x R) be reflection matrices imposed as homogeneous boundary condi- 
tions to define an initial-boundary value problem for (1.1) on [xl, x2. Then we have 

PROPOSITION 11. Let Q be a GKS-stable, totally dissipative, consistent model of the 
fixed-Ax two-interface problem described above, and suppose 

11|11 11 |2A11 <1 

in some norm subordinate to a vector norm. Then, for all sufficiently small h and k, Q is 
P-stable. 

Remark. By "totally dissipative," we mean that the interior model Q dissipates 
oscillations with respect to t as well as x. For two-level formulas this is the same as 
the usual definition of dissipativity. For multi-level formulas, there is the additional 
requirement that the scheme admit no solutions v~n = zno), 4 = const, with /z/ = 1 
but z * 1 [24]. 

Remark. This result is related to the theorem stated by Gustafsson in [11]. See also 
[7]. 

Proof. We must show that Q admits no eigensolution zn?A with /zj > 1, for large 
enough A j. Suppose to the contrary that for a sequence of values A j -x oc, Q has a 
solution znoj with /zl > 1. Since Q is GKS-stable, it has finite reflection coefficients, 
so (3.6)-(3.8) of the last proof are again valid. Equation (3.8) implies IKI t I and /ILs 4 1 
for some K and ju as A-j oo. By dissipativity, this implies K 1 and [- 1. By 
total dissipativity, this in turn implies z -* 1 also. 

Consider the behavior of the L X L matrix EL of (2.11) as A j xo and z 1. By 
consistency, L values IL and R values K approach 1, and the corresponding basis 
vectors in terms of which EL is defined approach the basis vectors for the differential 
equation, namely unit vectors of the form (0,. . . ,0, 1, 0,. . . ,0)T. Consistency further 
implies that the numerical reflection matrices Al and A2, when restricted to these L 
and R rows and columns, approach A1 and A2. On the other hand, the remaining 
L-L values ,1 and R - R values K are bounded away from 1 in modulus as 
A j oo, and therefore the elements of M-"j and KA'j in these remaining positions 
converge to zero as Av j x-* o. These observations imply 

lim ||K'jA1 " 1A1! in M jA2| < I2 11 
Aji-*o Aj%-*oo 

(The norms on the matrices without tildes are arbitrary, so long as they reduce to the 
norms on the matrices with tildes when restricted to the appropriate components.) 
Together with the hypothesis, these bounds show that EL cannot have 1 as an 
eigenvalue. Therefore, by Lemma 1, the assumed sequence of eigensolutions cannot 
exist after all. o 

Acknowledgements. I am grateful for valuable discussions with Robert Warming 
and Michael Giles. Marsha Berger made many constructive suggestions and caught 
an error in the formulation of Proposition 5. 
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APPENDIX 

Notation 

j, n space, time index 
h, k space, time step size 
X = k/h mesh ratio 

u ( x, t), v~n continuous, discrete solution vector 

N dimension of u, v 
wave number, frequency 

C( (, w ) group velocity 
z temporal amplification factor 
K, i rightgoing, leftgoing spatial amplification factor 
1, r no. of points to the left, right of center in stencil 
R = Ni, L = Nr no. of rightgoing, leftgoing numerical wave modes 

Q. Q finite difference model for i.v.p., i.b.v.p. 
A (z) reflection matrix function at boundary 
const positive constant, different each time 
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